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a b s t r a c t 

In this work we propose Jacobi–Fourier phase masks for wavefront coding-based imaging systems. The optical 

properties of the phase mask is study in detail and numerical simulation are shown. Pixel size and noise are taken 

into account for the deconvolution of images. Numerical simulations indicate that overall performance is better 

than of the well-known and commonly used trefoil phase. 
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. Introduction 

Wavefront coding (WFC) is a hybrid optical-computational tech-

ique that makes use of a phase modulating element in conjunction with

 deconvolution algorithm to extend the depth of field or depth of focus

f a digital imaging system [1–3] . 

The most obvious way to extend the depth of focus is to decrease

he aperture; However, this reduces the resolution of the system due to

iffraction and energy reduction at the sensor [4,5] . The other approach

s to deconvolve the defocused images in order to deblur the out of focus

egions. This approach has two main problems: 

a) the response to the system (PSF) is not invariant under focus shifts

and is therefore not known in most of the cases and, 

b) deconvolution is an ill posed problem due to the loss of information

for those special frequencies where the MTF is close or equal to zero

[6–9] . 

Many solutions have been proposed to achieve this goal, in recent

ecades within the field called engineering in the pupil. One of them,

he technique known as WFC developed by Dowski and Cathey [1] pro-

oses the simple placement of a phase mask (PM) at the exit pupil of the

ptical system that generates a controlled amount of third order aberra-

ions. The PM must be able to generate a PSF that is invariant within a

esired range of defocus and its corresponding MTF must also be free of

eroes within the interval of spatial frequencies that the optical system

as designed to detect [6] . Many other shapes deriving from the orig-

nal cubic phase mask solution [1] , have been proposed for some spe-

ific imaging systems. The most representative of these are: root square

7] , trefoil [10] , sinusoidal [11] free-form [12] , exponential [13] , tan-

ential [14] , logarithmic [15,16] , rational [17] and many others phase
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odulation shapes. PM in the shape of linear combinations of Zernike

olynomials have been also studied [8,18,19] . 

WFC has been successfully applied in different fields as infrared

maging [9] , optical design to reduce complexity of optical systems

18,20] , microscopy [21] , retinal imaging [22,23] among others. 

As we pointed out above, one of the requirements for the deconvolu-

ion process to be effective is that the MTF has not zeros. In general, most

f the MTFs used for WFC based optical systems obey this condition, but

hey show a sudden decay from the origin, what implies a loss of con-

rast in comparison with diffraction-limited optical systems. However,

he deconvolution process compensates this problem and the processed

mages show, in general, an acceptable contrast for the required depth

f field and resolution [5–8] . Even so, not all phases perform with the

ame quality in the final results. 

Recently, Nhu et al. [7] showed that the good performance of a root

quare shaped PM is due to the smooth shape of the phase generated in

he central part of the pupil and to a rapid variation at the periphery

hat leads to non-zero and stable MTFs when defocusing. Based on this

remise, in this study we look at the performance of PM in the shape

f Jacobi–Fourier (JF) and will find which one of them fits with this

ehavior and can be used for WFC. 

This work is organized as follows: In Section 2 we briefly intro-

uce the mathematical description and properties of the JFP, and in

he Section 3 we search for polynomials that are smooth in the center

nd steep in the periphery and propose some that meet the criteria for

ts validation in the following sections. 

In Section 4 we analyze the optical properties of JF phase mask

JFPM) and explain the decoding algorithms used to get the simulated

mages. Section 5 is devoted to show, analyze and discuss the results.

astly, in Section 6 we present the conclusions. 
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Fig. 1. Behavior of the radial Jacobi polynomials with n and p . 
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Table 1 

Radial dependence of 

JFPM. 

p Radial dependence 

6 
√
6 𝑟 5∕2 

7 
√
7 𝑟 3 

8 
√
8 𝑟 7∕2 

9 
√
9 𝑟 4 

10 
√
10 𝑟 9∕2 

Fig. 2. Diagram of wavefront coding imaging system used. 

Fig. 3. Radial phase profiles of the phase mask. 
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. Jacobi–Fourier polynomials 

Jacobi polynomials, G n ( p, q, r ), are a class of classic orthogonal poly-

omials in the interval [0,1], where n ≥ 0 indexes the set of orthogonal

olynomials for given p and q values, and the independent variable r
ill represent in this work the radial coordinate normalized to the pupil

adius [24] . 

The orthonormal Jacobi radial polynomials used in this work are

efined by [25] 

 𝑛 ( 𝑝, 𝑞, 𝑟 ) = 

√ 

𝑤 ( 𝑝, 𝑞, 𝑟 ) 
𝑏 𝑛 ( 𝑝, 𝑞 ) 

𝐺 𝑛 ( 𝑝, 𝑞, 𝑟 ) , (1)

here w ( p, q, r ) is the weighting function, and b n ( p, q ) the normalization

actor. The parameters p and q must obey ( 𝑝 − 𝑞 ) > −1 and q > 0; these

xpressions are calculated as follows [24,26] , 

 𝑛 ( 𝑝, 𝑞, 𝑟 ) = 

𝑛 ! ( 𝑞 − 1 ) ! 
( 𝑝 + 𝑛 − 1 ) ! 

𝑛 ∑
𝑠 =0 

( −1 ) 𝑠 ( 𝑝 + 𝑛 + 𝑠 − 1 ) ! 
( 𝑛 − 𝑠 ) ! 𝑠 ! ( 𝑞 + 𝑠 − 1 ) ! 

𝑟 𝑠 (2)

 𝑛 ( 𝑝, 𝑞 ) = 

𝑛 ! [ ( 𝑞 − 1 ) ! ] 2 ( 𝑝 − 𝑞 + 𝑛 ) ! 
( 𝑞 − 1 + 𝑛 ) ! ( 𝑝 − 1 + 𝑛 ) ! ( 𝑝 + 2 𝑛 ) 

, (3)

 ( 𝑝, 𝑞, 𝑟 ) = ( 1 − 𝑟 ) 𝑝 − 𝑞 𝑟 𝑞−1 . (4)

The shifted Legendre, Mellin, and shifted Chebyshev polynomials are

pecial cases of G n ( p, q, r ) [27] . 

The Jacobi polynomials are chosen as the radial function, hence

acobi–Fourier polynomials (JFP) P nm 

( p, q, r, 𝜃), are defined as [25] ,

 𝑛𝑚 ( 𝑝, 𝑞, 𝑟, 𝜃) = 𝐽 𝑛 ( 𝑝, 𝑞, 𝑟 ) exp 𝑖𝑚𝜃. (5)

For our purposes, in this work we will consider real polynomials and

e will use the following expression for the phase masks: 

 𝑛𝑚 ( 𝑝, 𝑞, 𝑟, 𝜃) = 𝐽 𝑛 ( 𝑝, 𝑞, 𝑟 ) cos 
(
𝑚𝜃 + 𝜃0 

)
, (6)

here 𝜃 is the azimuthal angle, 𝜃0 denotes the angle of rotated JPF

nd m ≥ 0 the azimuthal frequency. We must stress the fact that not all

ombinations of m, p and q provide 2D polynomials separable in the x
nd y coordinates. 
. Choice of Jacobi–Fourier polynomials 

First, we restricted all infinite possible sets of JFP to those with inte-

er values of p and q and 𝑝 = 𝑞. Other choices for these two parameters

ould also be considered and we do not claim that ours necessarily per-

orm better than others. The primary aim of this work is to show that

FP shaped phase masks can be used in WFC optical systems. Other fam-

lies of JFP will be the subject of future works. Considering that 𝑝 = 𝑞

e decided to denote the radial Jacobi polynomials as J n, p ( r ). 
In Fig. 1 we present the profiles of different JFP obtained with the

ombinations 𝑝 = [ 2 , 5 , 8 , 15 ] and 𝑛 = [ 0 , 1 2 , 3 ] . We observe that as n
ncreases the number of ripples increases and hence the smooth region

eeded in the central part of the pupil cannot be achieved. Moreover,

or values of p equal to or less than 5, the smooth flat central region

s very small or none existent and therefore we restrict our study to p
alues equal to or greater than 6. 

As we explained in the introduction, we adhere to the assumption

hat a phase with smooth slopes in the center of the pupil and steep

lopes at the periphery gives rise to defocus invariant MTFs leading to

ood resolution images [7] . We therefore initially selected 𝑛 = 0 and

 ≥ 6. Also, we disregarded values of p > 10 because, as we will show,

hey decrease the depth of focus. Thus, our study for the radial part of
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Fig. 4. (a) 2D Phase maps, (b) simulated PSF for the proposed JFPM and trefoil PM, (c) 3D MTF for JFPM and Trefoil PM. 
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t  
he JFP is restricted to 𝑛 = 0 and 6 ≤ p ≤ 10. Table 1 shows the radial

ependence of the chosen JFPM, J n, p ( r ). 
As for the choice of azimuthal frequency, for even values of m , JFPM

ehave as astigmatism aberration and the spatial resolution of the de-

oded images is poor. Odd values of m perform better. For 𝑚 = 1 they

xtent the depth of focus in the same way as coma [28] but this is not

s effective as trefoil, 𝑚 = 3 [10,20] . Moreover, when 𝑝 = 7 and 𝑚 = 3
FP becomes trefoil aberration (Zernike polynomial 𝑍 

3 
3 ) which has been

hown to perform better than the pure cubic mask originally proposed

y Dowski [19] , and hence the results for the JFPM proposed here will

e compared with those for trefoil one. 

. Optical properties of JFPM and decoding algorithms 

For the numerical analysis we considered an optical system consist-

ng of a lens with a focal length of 25 mm and pupil diameter of 10 mm.

he object is set at infinity with a wavelength of 632 nm. Also, we as-

ume that the JFPM is placed at the lens plane. The general scheme is

hown in the Fig. 2 . We illustrate the results with the object at infin-

ty for simplicity, but the numerical analysis is also valid for any set of

onjugated planes. 

The generalized pupil function Πn, p ( r, 𝜃) [29] for the optical system

an be expressed as: 

𝑛,𝑝 ( 𝑟, 𝜃) = 

{ 

exp 
[
𝑖𝑘 𝜙𝑛,𝑝 ( 𝑟, 𝜃) 

]
𝑖𝑓 𝑟 ≤ 1 

0 otherwise , (7)

here 

𝑛,𝑝 ( 𝑟, 𝜃) = 𝛼𝑟 
𝑝 −1 
2 cos 

(
3 𝜃 − 

𝜋∕ 4 
)
+ 𝑊 20 𝑟 

2 , (8)

nd 𝛼 denotes the strength of the phase, 𝑘 = 2 𝜋∕ 𝜆 is the wave number, 𝜆

he wavelength and r the radius of the lens which has been normalized

o unity. Since we are not interested in the orthogonality properties of

acobi Polynomials, we have normalized them to unity, in this way all

hey provide the same peak to valley (PV) values for the same strength

. W 20 represents the amount of defocus due to either a mispositioning

f the image plane or the object plane. − 𝜋∕4 is added to the angular
oordinate to rotate the point spread function (PSF) in the image plane

n order to reduce artifacts in the restored image. 

The system’s PSF was computed by evaluating the square modulus of

he discrete Fourier Transform of the optical pupil function. The optical

ransfer function (OTF) was computed as the inverse discrete Fourier

ransform of the PSF [30] . FFT evaluations were performed by rou-

ines provided by Matlab and sampling of the pupil plane on a grid of

096 × 4096 pixels in order to avoid undesirable numerical artifacts.

e determined a pixel size at the image plane of 0.79 𝜇m in order to

ork in the limit of the Nyquist theorem [30] . 

In Fig. 3 we show the profiles of the different radial Jacobi polynomi-

ls obtained with 𝑝 = [ 6 , 7 , 8 , 9 , 10 ] and 𝛼 = 100 𝜆. We can see how by

hanging the p value we are able to increase or decrease the extension

f the central plateau of the phase masks. 

Fig. 4 a shows the corresponding 2D contour maps of the different

hase masks, while Fig. 4 b shows the corresponding in-focus PSFs. We

an also observe on the contour maps that the extension of the plateau

ncreases as p increase and hence smaller PSFs. Fig. 4 c shows the in-

ocus corresponding 3D modulation transfer functions (MTF). It can be

bserved that for small values of p the MTFs show ripples at low fre-

uencies. As p increases the MTFs become smoother. 

.1. Analysis of optical properties of PM 

In this section, with the primary aim of comparing the performance

f the JFPM, we will analyze both MTFs and phase transfer functions

PTF) in X direction within a defocus interval of 5 𝜆, W 20 ∈ [0, 5 𝜆], and

wo values of the strength, 𝛼 = 50 𝜆 and 𝛼 = 100 𝜆. Owing to the symme-

ry of the problem, results are also valid for the interval [ −5 𝜆, 5 𝜆] . In
ig. 5 we plot the optical MTFs, denoted as MTF ( 𝛼, W 20 ), as well as the

ystem MTFs, MTF System 

( 𝛼, W 20 ), defined as: 

 𝑇 𝐹 System 
(
𝛼, 𝑊 20 

)
= 

𝑀 𝑇 𝐹 
(
𝛼, 𝑊 20 

)
𝑀 𝑇 𝐹 ( 𝛼, 0 ) 

, (9)

We can observe that in all cases MTF ( 𝛼, W 20 ) have not zeroes, and

herefore deconvolution is not going to be an ill posed problem. For a
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Fig. 5. (a) MTF ( 𝛼, W 20 ) corresponding to the different PM and defocus magnitudes for 𝛼 = 50 𝜆. (b) MTF System ( 𝛼, W 20 ) corresponding to the different JFPM and 

defocus magnitudes for 𝛼 = 50 𝜆. (c) MTF ( 𝛼, W 20 ) corresponding to the different PM and defocus magnitudes for 𝛼 = 100 𝜆. (d) MTF System ( 𝛼, W 20 ) corresponding to 

the different JFPM and defocus magnitudes for 𝛼 = 100 𝜆. 
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iven 𝛼, as p increases the amplitude of the MTF ( 𝛼, W 20 ) increases, this

ill have an impact on the signal to noise ratio of the coded images,

nd therefore, on the quality of the decoded images. On the other hand,

s p increases there is a loss of invariance in the defocus range, i.e., the

efocus interval is smaller. All MTF ( 𝛼, W 20 ) show ripples or oscillations.

he number and height of oscillations decreases as p increases. This

ehavior is more evident in the plots of the MTF System 

( 𝛼, W 20 ). 

The amplitudes of MTFs decrease and MTF curves become closer

ith the increase of 𝛼. 

In recent works it has been shown that artifacts are due to PTF be-

aviors [31,32] . Therefore, we do also include in this section an analysis

f the PTFs. In Fig. 6 we show the PTFs of the system, PTF System 

( 𝛼, W 20 ),

efined as: 

 𝑇 𝐹 System 
(
𝛼, 𝑊 20 

)
= 𝑃 𝑇 𝐹 

(
𝛼, 𝑊 20 

)
− 𝑃 𝑇 𝐹 ( 𝛼, 0 ) , (10)

We can observe that for a given p and a defocus value, as 𝛼 increases

he PTFs becomes smaller. For a given 𝛼, PTFs approach to zero as de-

ocus decreases, as expected. The behavior is clearly dependent on p .
 = 6 and 𝑝 = 7 show an almost linear dependence between PTFs and fre-

uencies. This relationship changes from 𝑝 = 8 , where PTFs are steeper

t small frequencies and change this behavior to become smooth func-

ions that approach asymptotically to a value. This value is closer to

ero as p and 𝛼 increases. All plots show ripples. Nevertheless, for small

 values, ripples are distributed along all frequencies, being higher at
mall frequencies, whereas for bigger p values oscillations are smaller

nd displace towards high frequencies. 

.2. Image simulation. Decoding algorithms 

In previous sections we describe the optical properties of the differ-

nt JFPM. In this section we will present simulated decoded images for

he axial interval [0, 5 𝜆]. As explained in the preceding section, we sam-

led the image plane at the limit of the Nyquist Theorem with a pixel

ize of 0.79 𝜇m. In the next section, numerical simulations of decoded

mages of a 1951 USAF target were performed considering a more real-

stic pixel size. Simulations were performed as per ref [33] : 

1) Image codification at high sampling rate; 

2) Image downsampling by factor 4, resizing the 4096 × 4096 pixels

image to a 1024 × 0124 pixels, i.e., a pixel size of 3.16 𝜇m; 

3) Noise adding. In order to analyze the performance of the mask in

presence of noise we added to the intermediate coded images ran-

dom Gaussian noise, with zero mean and three different values of

standard deviation: 0.06%, 0.2% and 1%, of the maximum value of

the gray level of the optically coded image. 

4) Fourier transform of the image; 

5) Zero padding of the Image Spectrum by adding a frame of zeros in

order to build a matrix of 4096 × 4096 pixels; 

6) Application of the Wiener Filter; 
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Fig. 6. (a) PTFs of system for 𝛼 = 50 𝜆 and 𝛼 = 100 𝜆. 

Fig. 7. Decoded images in the absence of noise obtained with the different phase masks and different amounts of defocus in the range (1 𝜆, 7 𝜆) for 𝛼 = 50 𝜆. 
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7) Inverse Fourier Transform of the Decoded Image Spectrum; 

8) Final Decoded Image is downsampled by 2 ×2 pixel binning. 

As stated above, the image restoration was by means of the Wiener

ilter [34] . We used values for the regularization parameter, 𝛾 within

he interval [ 10 −10 , 10 −3 ] in order to avoid the deconvolution filter falls

elow the noise floor or noise will be amplified in the final image. Thus,

he spectrum of the decoded image ( 𝐼 ) was derived from the follow-
dec 
ng equation: 

 ̂dec = 

𝐼 cod 
(
𝛼, 𝑊 20 

)
⋅ 𝑂𝑇 𝐹 ∗ ( 𝛼, 0 ) |𝑂𝑇 𝐹 ( 𝛼, 0 ) |2 + 𝛾

(11) 

here 𝐼 cod ( 𝛼, 𝑊 20 ) is the spectrum of the defocused coded images and

TF ( 𝛼, 0) is the in-focus Optical Transfer Function. 

It is important to note that only contrast and brightness were ad-

usted in the decoded images without the use of any other filter. 
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Fig. 8. Decoded images in absence of noise obtained with the different phase masks and different amounts of defocus in the range (1 𝜆, 7 𝜆) for 𝛼 = 100 𝜆. 
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. Results 

.1. Image simulation 

Figs. 7 and 8 show simulated images of the 1951 USAF target for

he noise-free case when 𝛼 = 50 𝜆 and 𝛼 = 100 𝜆 respectively. Simulations

re made beyond the chosen defocus interval, up to 7 𝜆. 

For comparison purposes, we also show the corresponding defocused

mages when there is no mask in the optical system. 

Figs. 9 and 10 shows the results for different levels of noise for

efocus 1 𝜆 and 5 𝜆 when 𝛼 = 50 𝜆 and 𝛼 = 100 𝜆 respectively. 

In all figures the size of the group of bars are G1 + E6 (Group 1,

lement 6) = 9.48 𝜇m and G0 + E1 (Group 0, Element 1) = 28.44 𝜇m.

.2. Discussion 

In the noiseless simulations we can observe from Figs. 7 and 8 , that

mages for 𝑝 = 6 show quite prominent artifacts ruining the image qual-

ty. For 𝑝 = 7 and in less degree for 𝑝 = 8 some artifacts remain for

arge defocus, what reduce the image quality; nevertheless, the depth

f focus for 𝑝 = 7 goes beyond the considered interval, achieving also

harp results up to 7 𝜆 of defocus. Simulations for 𝑝 = 9 and 𝑝 = 10 show

eglectable amounts or no artifacts, being contrast and resolution still

cceptable, but depth of focus can’t be extended beyond the interval

 −5 𝜆, 5 𝜆] , and this is due to the lack of invariance of the MTF’s as ex-

lained in previous section. Moreover, for 𝑝 = 9 and 𝑝 = 10 some defects

an be observed at the corners of the bars. And the edges of the bars are

o longer too sharp. The higher value of 𝛼 is the less artifacts present in

he images. 
From Fig. 6 and in agreement with Demenikov et al. [32] and Mo

t al. [31] , we can assume that oscillations in the PTF’s are the responsi-

le of artifacts in the images. Artifacts due to oscillations in the high fre-

uencies not noticeable because the MTFs are close to zero. For 𝑝 = 6 and

 = 7 show high oscillations in the PTF’s for low frequencies whereas for

igher values of p oscillations for low frequencies become very smooth

r none and therefore artifacts are not noticeable. Invariance in the PTF’s

r linearity seems not to be important in what artifacts refer. Distance

etween PTFs for different amounts of defocus translate into a shift and

umber of replicas of the artifacts, what depends on the value of 𝛼. 

Presence and amount of artifacts is also reflected in the system MTFs

 Fig. 5 b and d) which show strong ripples for the low frequencies for 𝑝 =
 and 7 and they are smooth for 𝑝 = 8 , 9 and 10. The lack of invariance

t low frequencies translate in loss of resolution . 

When noise is taken into account it can be observed that grainy im-

ges are obtained. The amount of grain for a given level of noise de-

reases with p . More grain implies less details in images. Therefore, the

ange of defocus for small p values shrinks. The greater the value of 𝛼

he grainier the images. All these results agree with the fact that the

rea under the MTF ( 𝛼, W 20 ) increases as p increases and/or 𝛼 decreases.

oise softens artifacts but they are still visible for 𝑝 = 6 and 7 for small

efocus. 

Therefore, from our point of view and for the optical system we have

onsidered, the JFPM with 𝑝 = 8 is the one that provides the best images

n the noiseless and small level of noise cases; 𝑝 = 9 for medium levels

f noise and 𝑝 = 10 for the highest level of noise here simulated. 

Finally, point out that by increasing the 𝐹 ∕# in an optical system the

OF could be also increased at expenses of reducing the light gathering

apacity of the lens. In the noiseless case a 𝐹 ∕# = 12 . 50 is needed for a
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Fig. 9. Decoded images in presence of different amounts of noise and different amounts of defocus in the range (1 𝜆, 5 𝜆) for 𝛼 = 50 𝜆. 

s  

p  

C  

s  

S  

w  

r  

i

𝑆  
ame image quality with a defocus of 5 𝜆. Image degradation, when stop-

ing down the aperture, depends mainly on the recording device. If a

CD is used, then photon noise, dark noise, and read noise must be con-

idered in the SNR calculation. Moreover, different CCDs show different

NR even for same pixel size. Here, in order to simulate the effects of
hat reduction of gathering light implies, we will assume the following

elationship between SNR for different 𝐹 ∕# 𝑠 [35] , what assumes SNR is

nversely proportional to the square of the 𝐹 ∕# , thus 

 𝑁 𝑅 12 . 5 = 𝑆 𝑁 𝑅 2 . 5 

( 2 . 5 )2 
, (12)
12 . 5 
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Fig. 10. Decoded images in presence of different amounts of noise and different amounts of defocus in the range (1 𝜆, 5 𝜆) for 𝛼 = 100 𝜆. 
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𝜎  
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t  

[

In Fig. 11 , simulations of images with 5 𝜆 defocus for an optical

ystem with 𝐹 ∕# = 2 . 50 and JFPM with 𝑝 = 10 and a defocused op-

ical system with 𝐹 ∕# = 12 . 50 are shown (assuming same exposure

ime in both cases). First row shows the degradation of the coded im-

ges for SNR = 37.5, 75 (same as used for simulation in Fig. 10 with

= 0.01) and 300. The second row shows the corresponding results for
 ∕# = 12 . 50 . Clearly, wavefront coded images show better resolution

nd they are less grainy for lower SNR values. For higher values, WFC

mages are less sharp but show less grain. Of course, noise is ampli-

ed by the deconvolution algorithm and there will be a lower limit for

he SNR value from which wavefront coding technique is not efficient.

36] . 
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Fig. 11. Simulated images with a defocus of 5 𝜆

and different SNR values for the respective relative 

apertures. Upper row for WFC with 𝑝 = 10 . Lower 

row with 𝐹 ∕# = 12 . 5 . Each column represents the 

same experimental noise conditions. 
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. Conclusions 

In this work we explore the use of the Jacobi–Fourier phase masks

o extend the depth of focus in an optical imaging system. For the radial

art we used Jacobi polynomials, J n, p ( r ) with integer indexes. For the

zimuthal dependence, we used cos (3 𝜃) in order to be able to draw

omparisons with the well-known trefoil phase mask used for wavefront

oding. In order to get a smooth central region in the masks, we used

nly 𝑛 = 0 Jacobi polynomials. For 𝑝 = 7 JFPM become trefoil PM. 

The optical system we use to simulate the performance of these

asks is a lens of 10 mm diameter and 25 mm focal length ( 𝐹 ∕# = 2 . 50 ).
esults are shown for two different mask strengths that provide focus

nvariance within the interval [ −5 𝜆, 5 𝜆] . 
We found that values of p smaller than or equal to 7 yield decoded

mages with artifacts, the smaller the p value the higher the amount

f artifacts. 𝑝 = 8 performs the best for the noiseless case or for very

ow levels of noise and but does not enable the extension of depth of

ocus beyond the defocus interval. For higher level of noise, p values

ver 8 perform better, i.e. the higher the noise the higher the p value

erforms better. These results agree with the analysis of the MTF curves.

or small values of p , the curves have ripples which result in the presence

f artifacts in the decoded images. Larger p value give rise to softer

urves and hence fewer artifacts or none at all. The higher the p value

he higher the MTF values and hence the best behavior in the presence

f noise. However, invariance is gradually lost as p increases, which

mplies that as the value of p increases, depth of focus decreases. In

ther words, the proper choice of the p value is a trade-off among signal

o noise ratio, desired depth of focus and presence of artifacts for a given

 ∕# of the optical system. 

In any case, we can conclude that JFPM are good candidates to obtain

igh resolution images in wavefront coding optical systems. 
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